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The kinetics of an irreversible monomer-monomer model of heterogeneous catalysis is investigated.
In this model, two reactive species, 4 and B, adsorb onto a catalytic substrate with a rate I and diffuse
onto it with a diffusion rate D. Atoms of similar species aggregate to form immobile islands while atoms
of dissimilar species combine and desorb from the substrate. In the limit of low coverage we find that
the island-size distribution function exhibits a scaling behavior. In particular, a mean-field rate equation
analysis shows that the density of the overall number of islands N (z) and the average number of atoms

per islands S(¢) follow power law behaviors:

N~(I*/D*»'% and S~ (DIt?)'/>.

For the two-

dimensional substrate we derive logarithmic corrections to the mean-field predictions, while in one di-
mension we develop a modified rate-equation approach that gives N ~ (I3t /D?)!/" and S ~(DI%*)'/".

PACS number(s): 05.40.+j, 68.70.+w, 02.50.—r, 82.20.Wt

I. INTRODUCTION

Heterogeneous catalysis is a fundamental kinetic pro-
cess in which the rate of chemical reactions is enhanced
near a surface [1]. The classical example is oxidation, the
process that does not readily occur in the gas phase but
proceeds much faster when the species are adsorbed onto
a catalytic substrate. The classical description of the
kinetics of heterogeneous catalysis, the Langmuir theory
[1], assumes that the reaction rate is a simple function of
average densities of reactants and thus ignores all micro-
scopic details. Recent theoretical approaches [2-11]
consider various microscopic effects and, in particular,
clarify the role of fluctuations.

In this paper, we investigate the kinetics of the
monomer-monomer catalytic reaction. In this model, two
different reactive species, 4 and B, adsorb onto the single
sites of a catalytic substrate and nearest-neighbor AB
pairs desorb from the substrate. Much of the previous
work has assumed that the adsorbate remains immobile
[6—11] although in a few recent studies the influence of
surface diffusion has been tested numerically [12,13]. The
diffusion of monomers clearly becomes important if the
adsorption rates for both species are small enough.
Moreover, even in the opposite limit of relatively large
adsorption rates, the role of diffusion increases at least in
the late stage of the catalysis process when the fraction of
vacant sites decays, thus decreasing the efficiency of
deposition.

We shall investigate the simplest monomer-momomer
catalysis model, which incorporates (i) the adsorption of
reactants onto the substrate, (ii) the diffusion of single
atoms, (iii) the formation of immobile islands composed
of more than one atom of a single species, and (iv) the
desorption of nearest-neighbor pairs of atoms of dissimi-
lar species. We shall assume that the escape of an atom
from an island is forbidden. We shall examine a low-
coverage regime in which coalescence of islands may be
ignored. If nearest-neighbor pairs of similar atoms are
immediately combined to form islands and nearest-
neighbor pairs of dissimilar atoms are instantaneously
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desorbed, the catalysis process is diffusion controlled. In
the opposite reaction-controlled case, the microscopic re-
action rates are small compared to the rate of collisions,
hence the mixing is perfect and one can expect the mean-
field predictions to hold independently on the dimen-
sionality of the substrate.

In the next section, we investigate the model without
deposition. Although this case is not particularly useful
in applications to catalysis, it may be interesting in other
realizations of our model. We use the rate-equation ap-
proach and establish a surprising equivalence of the rate
equations to a system of equations describing the one-
dimensional kinetic Ising model, which allows us to solve
the governing equations exactly. In Sec. III, we investi-
gate the diffusion-controlled catalysis process with depo-
sition in a mean-field approximation. We develop a scal-
ing theory to describe the long-time behavior of the pro-
cess and find that the density of the total number of is-
lands grows as ¢!/° in the long-time limit. We then exam-
ine the reaction-controlled catalysis process. For a
homogeneous case where the monomer-island reaction
rates vary as k' with the island size k, we find that the
island-size distribution function exhibits scaling but the
exponents are different for ¥ <1 and y > 1. In Sec. IV,
we discuss peculiarities of the diffusion-controlled model,
which take place on low-dimensional substrates. For
d =2, we derive logarithmic corrections to the mean-field
results while for d=1 we develop a modified rate-
equation approach which, in particular, predicts that the
number of islands grows as t7 as t— 0. Finally, we
summarize our results in Sec. V.

II. REACTION PROCESS WITHOUT DEPOSITION

Let us first consider the diffusion-controlled reaction
process without deposition in the mean-field limit. There
are two types of islands in the system: A4 islands and B is-
lands. Denote by A,(t) and B;(t) the concentrations of
A and B islands of size k, or k-mers, at time . If we ig-
nore fluctuations in the densities and shapes of the is-
lands, the kinetics can be described by rate equations
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dt =K, 4,8,
— 4, |K,4,+ 3 K;4,+K,B,+ 3 K;B; |,
j=1 ji=1
(1a)
4; _
+B1(KJ+IA1+1—K]AJ)’ ]22, (lb)

governing the evolution of 4; and symmetrical equations
for B,. The rates of aggregation 4,+4;—~A4;,, and
B,+B;—B;,,, and evaporation B+ 4;—A4; , and
A,+B;—B;_, are implicitly assumed equal and denoted
by K;. This is a reasonable assumption for diffusion-
controlled processes if the diffusivities of both 4 and B
monomers are equal.

Note that rate equations for similar aggregation-
annihilation processes but in the opposite extreme of
equal diffusivities of monomers and islands have been in-
vestigated in [14]. Another related system of equations
describing the single-species aggregation process with
diffusing monomers and immobile islands follows from
Eqgs. (1) by letting B; =0. That system of equations with
homogeneous reaction rates K; =j? has been studied pre-
viously [15,16]. For models with 0=y =<1, it was found
that the island-size distribution approach to final states
was strongly dependent on the initial conditions [16].

Consider the most interesting symmetrical case,
A, =B, and denote by C, the concentration of k-mers
of any type. Introducing the auxiliary time variable T,

t
T= ’ ’
Jarc,an, )
we arrive at the linear equations for C; (T):
aT =K,C,—2K,C,—2 3 K;C;, (3a)
ji=1
dc; .

Upon summing of Egs. (3), one can find the kinetic
equation for the density of the total number of islands

22 =—K,C,—2 3 K,C; . @)
ji=1

Similarly, the next two moments of the island-size distri-

bution function Cy(T), O(T)=3;>,jC;(T) and
M(T)=3;> ljZCj( T), satisfy the equations

de _ 2 dM _

Fe23 K, So=0. (5)

j=1
The second equation indicates that M =const. For the
present aggregation-evaporation process, a k-mer would
typically arise from the merging of k? monomers of both
species. Therefore, we conclude that the conservation of
the second moment in the aggregation-evaporation pro-
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cess could be considered as the conservation of mass in
the ‘“underlying” merging process. In contrast, for the
usual aggregation process the first moment, i.e., the mass
of the system, is always conserved.

For further analysis we should specify the reaction
rates. Consider the model of structureless islands in
which both mobile monomers and immobile islands occu-
py single lattice points. On the level of rate equations,
structureless islands correspond to the constant reaction
rates, K j =const. One can set the constant equal to one
without loss of generality. This leads to the kinetic equa-
tions

dc
dT‘ =C,—2C,—2N , %=—C1—2N, (6)
d¢; .

Introducing now the auxiliary variables C_;=C; and
Cy= —2N, one can rewrite Egs. (6) in the form of (7) with
Jj=1 and O, respectively. Moreover, the variables C;
satisfy (7) for all integer j. Note that Egs. (7) arise in a
number of models for one-dimensional systems with
nearest-neighbor coupling including, e.g., the kinetic Is-
ing model with zero-temperature Glauber dynamics [17],
the chain of harmonically coupled Brownian particles
[18], and the monomer-monomer catalysis without
diffusional relaxation [10]. A general solution to Egs. (7)
for the infinite chain subject to arbitrary initial conditions
C;(0)is

Ci(N=e T ¥ C,(0),_,((2T). ®)
m=—o0
Here I,, denotes the modified Bessel function of the order
m. Additionally, the definition of C; for j <0 implies
C_j(O)ZCj(O)' and Cy(0)= —%ijlej(.O.). Spec_if.‘ying
the exact solution for the monodisperse initial conditions,
C;(t=0)=§;, for j = 1, gives

C(T=e*"[I;_,2T)—2L;2T)+1;,,(2T)], j=1.
)

In  particular, the density of monomers
C(T)=e *T[I,(2T)—2I,(2T)+1,(2T)] vanishes at
T=T;=0.772 563, which corresponds to the value =
of the physical time ¢. All other concentrations are finite
at t=o0. Note also that in terms of the physical time ¢,
the density of monomers decays exponentially.

Ci()~e 1t (10)
with
p=2N(0)—Cy(0)=e ~I[I,(2T;)—15(2T;)]
=(0.200104 .

Furthermore, all other densities also approach their final
values exponentially, C;( o0 )—C;(t)~e ¥,

The distribution C;(z) does not reach a scaling form
and instead falls to the frozen state depending on initial
conditions. This is reminiscent of the behavior of pure
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aggregation models with diffusion monomers and immo-
bile islands [15,16]. A qualitative explanation of this
unusual behavior is provided by using the notion of inter-
nal time T, see [16]. Since this internal time is actually
the relevant time variable and since it changes in a finite
time interval, the scaling behavior just has no “time” to
develop. Nevertheless, the “deviation” from the frozen
state still has a self-similar form. Indeed, making use of
the asymptotic relation I;(27)— T//j! for j >>1 one can
find that the ratio

C;(1)/Cj( 0 )—exp[ —j(1—T/T;)] (1n

scales in the limit j—o and T—>T, with
J(T;—T)~jC,(t)~ je ~* kept finite.

Our previous treatment has assumed that islands are
structureless and the dimensionality of the substrate is
large enough so that the mean-field approximation pro-
vides an adequate description of the kinetics. Let us con-
sider these assumptions more carefully. One can try to
take into account the structure of islands by using the
general rate equations (3). For the diffusion-controlled
catalytic processes, the rate K ; of the reactions
C,+C;—C;y; can be estimated by applying
Smoluchowski’s formula [19] K;~D(R;+R; ¥¥"2 in d
dimensions (for d >2). Here D is the atomic diffusion
coefficient, and R, and R; are the radii of atoms and is-
lands containing j atoms. This result is based on consid-
ering the j island as an ideal spherical stationary trap of
radius R;+R;, which is surrounded by a cloud of
diffusing point particles that are captured upon contact
with the trap. The reaction rate is identified as the flux of
particles to the trap. If the islands are compact,
Smoluchowski’s formula gives K; ~j 1=2/d for j >>1. For
fractal islands having the fractal dimension D r» one has

.1/D (d—2)/D .
R;~j 7 and therefore K;~j f. Thus, in the
most interesting case d =2, and only for d =2, the struc-
ture of islands becomes unimportant and hence the model
of structureless islands may be applied.

In fact, for d =2 the situation is more delicate because
this case demarcates different behaviors of reaction rates
for d>2 and d <2. Indeed, if d >2 the density of
Brownian particles absorbed by a trap reaches a station-
ary profile. On the other hand, for d <2 the flux onto a
trap does not reach a stationary value. However, in two
dimensions the flux tends to 47D /In(Dt /R?) (see, e.g.,
[20]) and hence only logarithmic corrections to the
mean-field results for structureless islands are expected.

Another limitation of the previous treatment is an as-
sumption that the catalytic process is diffusion con-
trolled. In the opposite limiting case of the reaction-
controlled catalytic process, the mixing is perfect and one
can apply the mean-field description for a substrate of ar-
bitrary dimensionality. However, for realistic models in
which the islands have finite size, the reaction rates de-
pend on the size. It is difficult to establish such depen-
dence without going into the details of island forms. The
only general feature is the fact that K /j is bounded. It is
valid for islands of arbitrary shape since the number of
active sites on an island cannot increase faster than the is-
land size. It turns out that the extreme case K;=j is
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solvable. The system evolves onto a stationary state,
which is strongly dependent on the initial state. The
behavior very similar to the case of structureless islands
is found. Since the derivation of the exact solution is
rather lengthy, it is not included here.

III. REACTION PROCESS WITH DEPOSITION

In the model with deposition of monomers, we still re-
strict ourselves to the regime of low coverage where pos-
sible coalescence of islands may be ignored. We shall
focus again on the most interesting case of equal deposi-
tion rates of both species. For the case of structureless is-
lands, we get

c
dt‘ =I+DC,(C,—2C,—2N) , (12)
dc; _

—d‘t‘-=DC1(Cj_1—2Cj+Cj+1) , Jj22, (13)

where I is the rate of deposition. We will measure the
lengths in the units of the lattice constant. So the densi-
ties become dimensionless while the rates of diffusion D
and deposition I have the same dimension of (time)!.
The ratio A=D /I is an important dimensionless parame-
ter that is usually very large.

I could not find an analytical solution to this infinite
system of nonlinear differential equations. However, it is
possible to analyze the long-time behavior by assuming
that the solution approaches a scaling form as t— co.
Then one can check the self-consistency of the results.
Heuristically, the existence of scaling can be explained by
the slow decay of the density of monomers. Therefore,
the internal time T varies in an infinite time interval thus
providing “enough” time for the scaling to be developed.

Let us assume that asymptotically the concentration
distribution function CJ-(T)=C( Jj»T) may be considered
as a smooth function of j at least for j >>1. Let us define
the internal time by T'=D f odt’C (¢'), which differs
from (2) by factor D to make the internal time dimension-
less. Replacing now the difference operator on the right-
hand side of Eq. (13) by its differential approximation
shows that C (j, T') satisfies the diffusion equation

ac _ ¥’ C

oT a2 (14)
Equations (14) and (12) suggest the scaling ansatz of the
form

CU,T)~A"T~%F(n) , 1=—A= . (15)
U e MNAT

To find the exponents a and b let us compute the
asymptotic behavior of the density of the total number of

islands N, N=3;>,C;, by two complementary methods.
First, replacing the sum by the integral yields

V2T
Tb
Second, the kinetic equation dN /dt=I1—DC(C;+2N)

shows

N-»fowdj C(j, T)=1""° fo“’an(n) . (16)
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1 ey T
— o~ .
20C, 2F(0)

N (17)

By comparing (16) and (17), we determine the exponents

a= %, b=, and an additional normalization relation

2\/§F(0)f0°°an(n)=1 . (18)

To derive the complete scaling solution, let us substi-
tute the scaling form of (15) with b =1 into Eq. (14). This
gives

2
F 9 =0 . (19)
dn dn

The substitution F(n)=e ~7/4G(7) transforms (19) to

2 2
16 _T G-, 20)
dny 4

The general solution to this equation can be written in
terms of the parabolic cylinder function of the order — 1,
G(n)=AD_, ,(q)+BD_, ,(in). The  asymptotic
behavior at 7— oo implies B =0, while the normalization
condition (18) gives 4 =1. The latter result has been de-
rived after straightforward calculations making use of the
identity f o dnF(n)=—2F'(0), which directly follows
from Eq. (19), the values of D_, ,(0) and D", ,,(0) (see,
e.g., [21])

77,1/22~1/4 77.1/221/4

D_,,0)= re) DLl/z(O):—T%), (21)
and the identity T'(1)[(3)=7/sin(7/4)=7V2.
Thus, we have found the scaling solution,
. 19 —1/27—1/4 j* J
C(j,T)=3A T S D_,, ok
(22)

for the island-size distribution function. It is straightfor-
ward to check that C(j, T) is indeed a smooth function of
Jj as well as the fact that in the long-time limit the discrete
second derivative C; _;—2C;+C;,; may be replaced by
the continuous second derivative.

Several asymptotics of the island-size densities C;(T)
can be readily found, e.g.,

cj(T)zTY—”TerT—““ for j <<V'T (23)
25/41(3)
and
.2 .
CHT) =273\ 712" V2exp | =L | for j>>v'T .
(24)

Combining the definition of the internal time and the
asymptotic expression for the density of monomers gives
the relation between physical and internal times

T = AN/3(It)* (25)
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with a numerical factor A=271/35%372/5[(3)]74/3
=0.803 028.

Neglecting numerical factors we obtain the following
asymptotic behaviors for the density of monomers, is-
lands, and the average number of atoms per island, S (¢):

C(t)~A735I) 13,
N(t)~A"23(n'3 (26)
S(t)~7»1/5(1t)2/5 .

Note that in the model of single-species growth with
diffusing monomers and immobile islands, the island-size
distribution also scales so that C;~A"2/3%7!/3 and
N~AT1V3t173, see, e.g., [16,22-28]. Thus, we reach an
intuitively appealing conclusion that in the present model
of two-species growth both N (¢) and S (¢) increase more
slowly.

Since we have ignored the coalescence of islands, we
should check that the coverage is small. The coverage 6
is given by the second moment of the island-size distribu-
tion, 6(t)=3;>jC;(t)~A"'*(It)*”>. Hence the low-
coverage condition 6 <<1 implies an upper bound on the
time It <<A!/3. Combining this with Eq. (26) gives upper

bounds on the density of islands N <<N_,,=A"'* and
for the average number of atoms per islands
S <S8 pax =AM

max
It is useful to reexpress the asymptotic relations (26) as
the functions of coverage 6:

C1(9)~)»2/36_1/3 ,
N(@)~A"173913 | 27)
S(9)~)\’1/392/3 .

A surprising feature of these asymptotics is that they
coincide with the asymptotics describing the single-
species growth model in which the coverage and the time
are proportional to each other. However, the details of
the island-size distribution are very different in both mod-
els. In the two-species model, the island-size distribution
is flat for sufficiently small islands, j <<.S, while in the
single-species model it has a sharp peak at j ~S.

Previous results have been established for the case of
structureless islands in the diffusion-controlled limit. As
has been argued earlier, even for general diffusion-
controlled catalytic processes in the low-coverage limit,
the point-island rate equations are expected to provide an
accurate description except for logarithmic corrections.
In the opposite limiting case of reaction-controlled cata-
lytic processes, the reaction rate K; depends on the island
size j. It is natural to assume that K; scales as the island
perimeter. Thus, in this limit for the case of compact is-
lands on a two-dimensional substrate K; ~j" with y =1,
while for fractal islands we expect y=1/D; and hence
1<y <1l. Since the proportionality factors do not
influence the scaling behavior, we will ignore them and

- consider a general homogeneous form K;=j". In the

long-time limit, the island-size distribution function
satisfies the modified diffusion equation
2/ s
aC;  9(j"Cy)

=7 28
o o (28)
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while the rate equation for monomer density implies
2AC, 3 j7C;=1. (29)
ji=1

The scaling ansatz compatible with (28) and (29) has the
form

C-(T)z)&_l/zj_yT_l/(4_27)F(17) , ,77=jT-—l/(2—-y) .

J
(30)

Relating then the physical and internal times, we can

reexpress the basic quantities in terms of A and #:

Ci~A"%It) P, N~A"P(It)?, S~A(It?, (31

with the exponents

_3=r 12y
5—2y ° 5—2y °
4 4 (32)
Bmr=5%, P75y,

Since the total number of islands is an increasing func-
tion of time, at least in the low-coverage limit, the ex-
ponent g must be non-negative. Thus, Eq. (32) is expect-
ed to hold if y < 1. (In fact, in the special case ¥ =1 loga-
rithmic corrections should appear. A separate analysis is
required, see [16,22,28] for a similar treatment in the
model of single-species growth.)

For the case ¥ > 1, we assume that the total number of
islands reaches the constant, N—A"?. Ignoring for the
moment the A dependence, we make use of the scaling
form C;~t#j7YF(jt %) to find N~t~A+=177) anqd

M=Ej2Cj~t*E+Z(3a”). Since N is constant and M =1,

we obtain B=z(1—y) and 1+B=2z(3—y). Solving for B
and z gives B=(1—v)/2, z=1. Proceeding in a similar
way we find all the exponents:

2+
a_——I’L’ Bz%a P=%, q=07

(33)

Notice that an implicit assumption on the behavior of the
scaling function in the small size limit, F(n)—F(0)>0
as 7—0, turns out to be correct only in the case ¥ <1.
In the present case y > 1 we instead assumed F(7)~7?
and found w=2y=1. This explains the difference be-
tween the exponent 3 describing the monomer decay and
the exponent B describing the decay of the island-size dis-
tribution.

IV. REACTION PROCESS
ON LOW-DIMENSIONAL SUBSTRATES

Returning to the diffusion-controlled process and not-
ing that d=2 is the critical dimension for diffusion-
limited island growth, we conclude that the rate-equation
approximation cannot be applied for low dimensions, i.e.,
when the substrate has dimension d =1 or d =2. In fact,
the most important two-dimensional case is marginal;
therefore, the correct behavior is provided by the mean-
field approximation up to logarithmic corrections. To
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figure out these corrections, we adapt an approach from
the single-species study [24] to the present situation.
Starting from the one-dimensional case, let us first try to
obtain an approximate differential equation for the densi-
ty of monomers. If 7is a collision time, one has

“_, G (34)

dt T

In the long-time limit, the density of monomers is very
small and we can ignore monomer-monomer reactions.
Islands are distributed on a lattice with the density N,
C; <<N <1, and they play a role of traps. When a
monomer hops on such a lattice with rate D, it will be
trapped after a typical time [29]

(DN)™', ifd>2
1

7~ {(DN) " n|=— |, ifd=2 (35)

(DN?)~!, ifd=1.

By combining (35) and (34) for d >2, we obtain a
governing equation for the monomer density, which
agrees with Eq. (12) in the long-time limit. In contrast,
for d=1 and 2 we obtain nonquadratic reaction term:
DC;N? in the former case and DC;N /In(1/N) in the
latter. Similar corrections to the mean-field rate equa-
tions appeared in equations for all other densities. So let
us write down the modified rate equations that differ
from the mean-field ones just at this point and examine
the long-time behavior. We expect that such an ap-
proach provides asymptotically correct results as it
indeed took place in a number of similar situations (see,
e.g., [30] and references therein). One cannot expect that
numerical coefficients in reactions terms are correct;
therefore, we prescribe to these coefficients the same
values as in the mean-field equations.

In one dimension we have

c
dt‘ =I+DC,N(C,—2C,—2N) , (36)
dc;
d—lf’:DclN(cj*l—zchrc,H) , j=2. 37)
Introducing the internal time T,
T= ['dr'DC,(t")N(1") (38)
0

and going to the continuum approximation, we can
rewrite Eq. (37) in the previous form of the diffusion
equation (14). Taking the scaling ansatz of the form

CUD=A""TF,(), n=—A=, (39)
J 1\ n VaT
we again compute N by two independent methods to find
had —_ -]
N(T)=3 =27 2L [“anFim @0
i=1
and
Tb/2
N(T)=Q2AC,) 1 2=pla D2 v | (41)

vV 2F,(0)
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These two expressions allow us to determine the ex-
ponents a =%, b=1, and to obtain a normalization con-

dition
2VF(0) [ “dn Fi(m)=1. 42)

By inserting the scaling ansatz (30) with b =1 into Eq.
(14), we arrive at

PPy P ap 2o (43)
d772 n d"7 3517 Y.
A solution to Eq. (43) can be written in terms of the
parabolic  cylinder function D_,,3(%), F(n)
= A exp(—n*/4)D _, ;3(n). Therefore,
-2
sy g3 —1/3—1/3 _J —J
C(j,T)=~AA T~ exp 5T D_,; V2T
(44)

Here the constant A4 can be determined from the normal-
ization condition (42). A lengthy calculation gives
A=[D()]AT(L)P P~ 1/2275/6372/3=0.528 952.
Combining the relation between T and ¢ [given by Egs.
(38)] and the asymptotics C,(T)~A~ 317173
N(T)~A"173T1/8 gives the relation between the (dimen-
sionless) original time It and the internal time T,
It ~A"V3T7778, Then we find the coverage
O~A"13T23~ A~ 17(1t)*7. So in one dimension we get

C1 ~}\,_3/7(It)_2/7~}\_1/29_1/2 ,
N~A,_2/7(It)l/7~A~1/491/4 , (45)
~}u1/7(1t)3/7~}\.1/493/4 .

Note that for the single-species growth model, the corre-
sponding asymptotic results read C; ~A~1/2¢ 1”2, Thus
the 0 dependence is again the same for both single-species
and two-species models, although the details of island-
size distributions are different. Note also that the low-
coverage condition indicates that the present theory can
be applied when N <<N_,, =A 174

On the two-dimensional substrate, the governing equa-
tions are

1

dcC,
—_—= ——N(C,—2C,—2N), 46
o I1+DC, ln(l/N)N( ,—2C,—2N) : (46)
X pe,—L (¢, —ac+C ), j22, @)
dt lln(l/N) —1 Jj j+17 J= ’
Introducing the internal time T,
(¢")
T= f dt' —— (48)

ln[ 1 /N ("]’
we again obtain the diffusion equation for C;(T). We will
assume the scaling ansatz of the form

C(j, T)=A"V2T VAL F, () , (49)

pm—d_
vaT

which differs from the mean-field one by some power of a

logarithmic factor L, to be specified below. Repeating
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the steps employed in analogous previous computations,
we get v=1 and L =In(A*/It) as well as the normaliza-
tion condition, which is identical to the mean-field one.
It is then straightforward to verify that the scaling func-
tion F, is identical to the mean-field scaling function,
Fy(m)=exp(—n>/4)D _ (7).

Thus, on the two-dimensional substrate

~(}\,/L)_:;/S(II)_l/S"’(A/L)_2/39—1/3 ,
~(A/L)"23U) P~ (A /L)"136'3 (50)
~(A/L)I/S(It)Z/S~(X/L)1/302/3 .

By comparison with the mean-field results we conclude
that the main difference is the “renormalization” of the
deposition rate: A—A/L. Note also that the low-
coverage condition yields N << N ., =[In(A)/A]!/3.

V. SUMMARY

A model that describes the kinetics of the monomer-
monomer catalytic reaction with diffusional relaxation is
proposed. The model incorporates adsorption, diffusion
of single atoms, aggregation of similar-species atoms into
immobile islands, and desorption of adjacent dissimilar-
species atoms. The present model is based on a few fun-
damental kinetic mechanisms that may equally arise in
very different situations; hence, the model may describe
different physical processes.

This study has focused on the case of structureless is-
lands in the low-coverage limit. We have found a surpris-
ing equivalence of the rate equations describing evolution
of our model without deposition and equations governing
the kinetics of the one-dimensional Ising model with
Glauber dynamics at zero temperature. This has allowed
us to obtain a closed-form analytical solution and to find
out that the system approaches a frozen state strongly
dependent on the initial conditions. For the system with
deposition, we have found that the island-size distribu-
tion exhibits the scaling behavior. These results have
been derived on the level of rate equations, which provide
an appropriate description for substrate of dimensionality
d>2. A generalization for one- and two-dimensional
substrates based on a modified rate-equation approach
also reveals the scaling behavior. While our results are
only appropriate for the low-coverage limit, we have ar-
gued that other idealizations of the present surface reac-
tion model such as the structureless condition are less
significant, at least for the most important case of the
two-dimensional substrate [23,25-27].
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